Robust Semantic Analysis of Multiword Expressions with FrameNet

Miriam R. L. Petruck Valia Kordoni
miriamp@icsi.berkeley.edu

International Computer Science Institute, Berkeley (USA)
Humboldt-Universität zu Berlin (Germany)

18.09.2015
Road Map I

1. **MWEs: Theoretical Background & Motivation**
 - Linguistic and CL Theories

2. **MWEs: Computational Methods**
 - “Discovering” MWEs
 - Syntax-based Extraction
 - MWE Identification in Context
 - Interpretation
 - Detecting a Continuum of compositionality in PVs
 - Interpreting Nominal Expressions
 - NLP Tasks and Applications

3. **Resources, tasks and applications**
 - Tools
 - Resources
Road Map II

- Tasks and applications
- Evaluation

4 Future challenges and open problems
MWEs: Theoretical Background & Motivation
- Linguistic and CL Theories

MWEs: Computational Methods
- “Discovering” MWEs
- Syntax-based Extraction
- MWE Identification in Context
- Interpretation
 - Detecting a Continuum of compositionality in PVs
 - Interpreting Nominal Expressions
- NLP Tasks and Applications

Resources, tasks and applications
- Tools
- Resources
Road Map II

- Tasks and applications
- Evaluation

Future challenges and open problems
The study of MWEs

- is almost as old as linguistics itself
- in the traditional generative grammatical framework, the representation of idioms poses a challenge, e.g., the idiom *first off* is an adverbial locution synonym to *firstly*
- in Construction Grammar, [Fillmore et al., 1988b]
 - suggest that there must be an appendix to the set of lexical units and syntactic rules of a language model for *idiomatic* entries and their specific syntactic, semantic and pragmatic characteristics
 - this way, idioms can become part of the core of the grammar: that is, a language can be fully described by its idioms and their properties
In *meaning-text theory* (MTT)

- [Mel’čuk and Polguère, 1987] suggest that a dictionary entry contains three zones: (i) the semantic zone, (ii) the syntactic zone, and (iii) the lexical combinatorics zone.

- MWEs are present at two points of the computational MTT model: as *phrasemes* and as *lexico-semantic functions (LSF)* in the so-called *lexical combinatorics zone*.
In psycholinguistics and cognitive linguistics, there has been work on learning

- verb-particle constructions [Villavicencio et al., 2012]
- noun compounds [Devereux and Costello, 2007]
- light verb constructions and
- multiword terms [Lavagnino and Park, 2010] based on corpora evidence and sophisticated cognitive models; these models try to validate computational models for MWE acquisition by checking their correlation with experiments that use similar models for human language acquisition [Joyce and Srdanović, 2008, Rapp, 2008]
In computational linguistics

- The study of MWEs arose from the availability of very large corpora and of computers capable of analyzing them by the end of the 80's and beginning of the 90's.

- The aim was to build systems for computer-assisted lexicography and terminography of multiword units [Choueka, 1988]

- [Smadja, 1993] proposed Xtract, a tool for collocation extraction based on some simple POS filters and on mean and standard deviation of word distance.

- [Church and Hanks, 1990] suggested a more sophisticated association measure based on mutual information.
In computational linguistics

- later, [Dagan and Church, 1994] proposed a terminographic environment called Termight, which uses this association score, performs bilingual extraction, and provides tools to easily classify candidate terms, find bilingual correspondences, define nested terms and investigate occurrences through a concordancer.

- [Justeson and Katz, 1995] proposed a simple approach based on a small set of POS patterns and frequency thresholds.
In computational linguistics

[Dunning, 1993] proposed a 2-gram measure called *likelihood ratio*. It estimates directly how more likely a 2-gram is than expected by chance. In addition to being theoretically sound, Dunning’s score is also easily interpretable. Nowadays, measures based on likelihood ratio (e.g., the log-likelihood score) are still largely employed in several MWE extraction contexts.
In computational linguistics

At the beginning of the 2000’s, the Stanford MWE project (http://mwe.stanford.edu/) has revived interest of the NLP community in this topic. One of the most cited publications of the MWE project is the famous “pain-in-the-neck” paper by [Sag et al., 2002b]. It provided an overview of MWE characteristics and types and then presented some methods for dealing with them in the context of grammar engineering. The Stanford MWE project is also at the origin of the MWE workshop series.
MWEs: their semantics

MWEs and the Notion of Compositionality: *Definition*

Degree to which the features of the parts of an MWE combine to predict the features of the whole
MWEs: their semantics

MWEs and the Notion of Compositionality

Generally considered in the context of semantic compositionality, but we can equally talk about:

- lexical compositionality
- syntactic compositionality
- pragmatic compositionality
Example: Syntactic Compositionality

Definition: Degree to which the syntactic features of the parts of an MWE combine to predict the syntax of the whole

- Fixed expression: *by and large, San Francisco*
- Verb particles: *eat up vs. chicken out*

Syntactic compositionality binary effect: non-compositional MWEs lexicalised
Question

Given that compositionality extends over all aspects of markedness that affect MWEs, is it all we need to take into consideration?

Almost, but there are subtleties due to:

- statistical markedness
- decomposability
Question

Given that compositionality extends over all aspects of markedness that affect MWEs, is it all we need to take into consideration?

Almost, but there are subtleties due to:

- statistical markedness
- decomposability
Statistical Markedness (Revisited)

- Statistical markedness is not a lack of compositionality:
 1. \(p(\text{impeccable N}) \times p(\text{Adj eye}) \approx p(\text{impeccable eye}) \)

 - **BUT**

 2. \(p(\text{unblemished N}) \times p(\text{Adj eye}) \gg p(\text{unblemished eye}) \)

 3. \(p(\text{spotless N}) \times p(\text{Adj eye}) \gg p(\text{spotless eye}) \)

 4. \(p(\text{flawless N}) \times p(\text{Adj eye}) \gg p(\text{flawless eye}) \)
MWEs: their semantics revisited

Decomposability: *Definition*

- degree to which the features of an MWE can be ascribed to those of its parts
MWEs: Theoretical Background & Motivation
MWEs: Computational Methods
Resources, tasks and applications
Future challenges and open problems

Linguistic and CL Theories

MWEs: their semantics revisited

Decomposability: Three Classes of MWEs

Classification of MWEs into 3 classes:

- **non-decomposable MWEs**: kick the bucket, hot dog
- **idiosyncratically decomposable MWEs**: spill the beans, let the cat out of the bag
- **simple decomposable MWEs**: kindle excitement
Consider:

*the bucket was kicked by Kim

Strings were pulled to get Sandy the job.

The FBI kept closer tabs on Kim than they kept on Sandy.

... the considerable advantage that was taken of the situation

The syntactic flexibility of an idiom can generally be explained in terms of its decomposability
simple compositionality is adequate for describing many instances of lexical, syntactic, semantic and pragmatic markedness

BUT the notion of compositionality is significantly different for statistically marked MWEs

AND decomposability diffuses the markedness boundary
MWEs: their importance for Linguistics and CL

And why is it that we care about MWEs?

Because of the role of MWEs in:
- Lexicography/dictionary making
- Idiomaticity (coherent semantics)
- Overgeneration
- Undergeneration
- Relevance in NLP and LT applications, including MT, IR, QA, ...
Road Map I

1. MWEs: Theoretical Background & Motivation
 - Linguistic and CL Theories

2. MWEs: Computational Methods
 - “Discovering” MWEs
 - Syntax-based Extraction
 - MWE Identification in Context
 - Interpretation
 - Detecting a Continuum of compositionality in PVs
 - Interpreting Nominal Expressions
 - NLP Tasks and Applications

3. Resources, tasks and applications
 - Tools
 - Resources
Road Map II

- Tasks and applications
- Evaluation

Future challenges and open problems
Overview

Adapted from [Anastasiou et al., 2009]

- **Acquisition**

- **Extraction**
 How can we build a list of MWE types from corpora?

- **Identification**
 How can we locate the tokens that correspond to MWEs in context?
Overview (contd.)

Adapted from [Anastasiou et al., 2009]

- **Classification**
 - **Interpretation**
 How can we discover the syntactic and semantic relations between the units that compose a MWE type?
 - **Disambiguation**
 How can we disambiguate the syntactic and semantic properties of a MWE token in context?
Overview (contd.)

Adapted from [Anastasiou et al., 2009]

- **Representation**
 How can we represent complex MWEs in computational lexicons?

- **Tasks and applications**
 How can we integrate MWEs in NLP tasks (parsing, WSD) and applications (IR, MT)?
“Discovering” MWEs: Co-occurrences

- If *a word is characterized by the company it keeps* [Firth, 1957] then we can try to find MWEs using information about how often words co-occur together.

- **Hypothesis**: the more frequently some words occur together, the more likely it is that they form a MWE.
Statistical association measures (AMs)

- can give indication of strength of the association between words (or n-grams)
- based on frequency of words individually and as a group
"Discovering" MWEs - Filtering with Association Measures

Hypothesis: If the words are dependent then the candidate is a MWE

1. Determine the probability given by the Null Hypothesis (that they are independent)
2. Compare with the probability given by a statistical measure
 - t-test, Pearson’s X^2, Pointwise Mutual Information, Mutual Information, ...
3. If Null Hypothesis is rejected then they are dependent (MWEs)
“Discovering” MWEs: Alternative Measures: Entropy-based

Hypothesis: MWEs prefer a certain word order (*give a demo* vs *a demo give*)

- If a candidate is result of random combination of words then word order in n-gram is not important: *of alcohol and*, *and of alcohol*, *alcohol and of*, etc.

- Entropy:
 \[S = -\frac{1}{\log N} \sum_{\text{perm}} P(abc) \log P(abc) \]
 \[S \rightarrow 0 \] (prevalent order) \(\rightarrow\) possible MWE

<table>
<thead>
<tr>
<th>MWE</th>
<th>Pages</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>the burden of</td>
<td>36,600,000</td>
<td>0.366</td>
</tr>
<tr>
<td>but also in</td>
<td>27,100,000</td>
<td>0.038</td>
</tr>
<tr>
<td>to bring together</td>
<td>25,700,000</td>
<td>0.086</td>
</tr>
<tr>
<td>points of view</td>
<td>24,500,000</td>
<td>0.017</td>
</tr>
<tr>
<td>and the more</td>
<td>23,700,000</td>
<td>0.512</td>
</tr>
<tr>
<td>taking into account the</td>
<td>22,100,000</td>
<td>0.009</td>
</tr>
</tbody>
</table>
Evaluation of the Extraction of MWEs

Factors in MWE Extraction [Evert and Krenn, 2005]

- corpus size and type
- MWE type and language
- AMs

Comparison of AMs

- 84 measures among which some are rank-equivalent to one another [Pecina, 2008]
- comparison of their combination [Ramisch et al., 2008]
More on Evaluation of the Extraction of MWEs

For statistical approaches there are two important questions:

Q1 How reliable/generalizable are the results for a given corpus?

Q2 How precise an association measure is to distinguish MWEs from noise?
Evaluation of the Extraction of MWEs - Comparing corpora

Q1: How reliable/generalizable are the results for a given corpus?

- **Hypothesis**: relative candidate rankings are preserved across similar corpora
 - If not, different conclusions may be drawn from different corpora

- **Evaluation**
 - list of MWE candidates
 - 4 corpora
 - standard: BNC vs fragment of the BNC (BNC_f)
 - WACs: Google vs Yahoo
Evaluation of the Extraction of MWEs - Comparing corpora

Relative Frequency Rank for the Trigrams

- Kendall’s τ scores between corpora show significant correlation ($p \leq 0.000001$)
- A higher correlation was observed between Yahoo and Google: as corpora sizes increase, so do the correlations between them

<table>
<thead>
<tr>
<th></th>
<th>BNC</th>
<th>Google</th>
<th>Yahoo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC</td>
<td>0.81</td>
<td>0.73</td>
<td>0.78</td>
</tr>
<tr>
<td>BNC$_f$</td>
<td>0.73</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Google</td>
<td></td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

M. R. L. Petruck, V. Kordoni

EMNLP: Multiword Expressions
Q2: How precise an association measure is to distinguish MWEs from noise?

- Using a single corpus (BNC\textsubscript{f}), comparing MI, χ^2 and Permutation Entropy (PE)
- Kendall’s τ for assessing the correlation of the rankings for these AMs and Q is the probability of finding the same ordering in them

<table>
<thead>
<tr>
<th></th>
<th>MI $\times \chi^2$</th>
<th>MI \times PE</th>
<th>χ^2 \times PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>0.71</td>
<td>0.55</td>
<td>0.45</td>
</tr>
</tbody>
</table>

- The correlations found are statistically significant
- The measures order the trigrams differently
 - 70% chance of getting the same order from MI and χ^2
Verb-particle Constructions (VPCs) [Baldwin, 2005]

- VPC = verb + obligatory particle(s) (e.g. hand in, battle on)
 - **intransitive**: e.g. the team battled on
 - **transitive**: e.g. Kim handed the paper in

- Variable word order for transitive VPCs:
 - **joined**: hand in the paper
 - **split**: hand the paper in

- Structural/analytical ambiguity:
 - hand [the paper] [in] [here] vs. hand [the paper] [in here] vs. hand [the paper in here]
 - hand [in] [the paper] vs. hand [in the paper]
Token Identification

MWE or not?

- The cook/journalist **spilled the beans**
- [Kim and Baldwin, 2010] identify token instances of VPCs from output of parser
 - head nouns can help distinguish if V and P in a given sentential context are
 - VPC: *Kim handed in the paper* or
 - verb-PP: *Kim walked in the room*
- post-processing VPC identification
- combine syntactic and semantic features
- using sentential context of instances of VPCs and verb-PPs
MWE or not?

- Semantics of VPC may be
 - derived from semantics of verb and particle: *walk off*
 - different from them: *look up*;

- Selectional preferences of VPCs may
 - mirror those of the verbs: *clean* and *clean up*
 - diverge: *put the book on the table* and *put on a sweater*;

Different selectional preferences for verb in isolation or in VPC
Token Identification

Method

1. From parser output identify:
 - verbs and particles and transitive prepositions
 - head nouns of subject and object of each verb

2. Obtain lexical semantics of the head nouns
 - based on WordNet 2.1 [Fellbaum, 1998]
 - using the first sense for that word in SemCor (Landes et al., 1998)

3. Build a classifier
 - feature vector for VPC and verb-PP: \((verb, preposition, subject \; WN \; class, \; object \; WN \; class)\)
MWE Identification with Distributional Thesaurus

- Compositionality detection [McCarthy et al., 2003] via automatically acquired thesaurus [Lin, 1998]
 - Thesaurus contains 500 neighbors for verb and VPC from subject and object grammatical relations of simplex verb and VPC
- Indicators of VPC Compositionality:
 - overlap of neighbors of simplex and VPC
 - neighbors of VPC include other VPCs with same particle
 - verb neighbor of VPC, etc
Detecting a Continuum of compositionality in PVs

Evaluation: against human judgements

- 116 annotated VPC
- 3 native speakers
 - scale from 0 (non-compositional) to 10 (fully compositional)
- Correlation with
 - frequency of VPC and verb
 - resources
 - Wordnet, Alvey Tools Lexicon
 - AMs
 - χ^2, log likelihood ratio, PMI
Compound Nominals and Nominalisations

Compounds vs Nominalisations

- **Compound nominal**
 - N’ made up of two or more nouns
 - Largely unrestricted semantically
 - *diesel truck/oil/tanker, phone book, cloud bus*

- **Nominalisation:**
 - subclass of compound nominals in which the head noun is deverbal, e.g.:
 - *machine performance, museum construction, family worker, student education, farm agreement*
 - tend to occur with subject or object interpretation:
 - *machine performance, museum construction, student education BUT also soccer competition*
Compound Nominals

Characteristics

- Highly productive ($\approx 300K$ NN types in BNC)
- Very frequent ($> 1M$ NN tokens in BNC)
- Very skewed in frequency ($\approx 60\%$ of NN types in BNC occur once)
Task: classification of nominalisations as having a subject or object interpretation

Assumption: the relation of the nominalised head and modifier can be approximated by relation of modified noun and verb from which head is derived

\[P(\text{rel}|n_1, n_2) \approx P(\text{rel}|v_{n_2}, n_1) \]

Problem: getting accurate estimates of \(P(\text{rel}|v_{n_2}, n_1) \)

Annotator agreement = 89.7%

Baseline accuracy of 61.5% (OBJ interpretation)

Lexical coverage is a major barrier to broad-coverage linguistically deep processing

- 40% parsing failures caused by missing lexical entries
 [Baldwin et al., 2004]

MWEs are a significant part of the lexicon

- Detect potential errors in parsing involving sequences of words
- Identify MWE candidates
- Generate new lexical entries based on corpus data
Extension of a hand-crafted linguistic resource with MWEs: English Resource Grammar [Flickinger, 2000]

- A large scale broad coverage precision HPSG grammar
- Lexicon coverage is a major problem
- MWEs comprise a large portion of the missing lexical entries
Lexical hierarchy and atomic lexical types

- The lexical information is encoded in atomic lexical types
- A lexicon is a $n : n$ mapping between lexemes and atomic lexical type
Lexical hierarchy and atomic lexical types

- The lexical information is encoded in atomic lexical types
- A lexicon is a $n : n$ mapping between lexemes and atomic lexical type

M. R. L. Petruck, V. Kordoni
Lexical hierarchy and atomic lexical types

- The lexical information is encoded in atomic lexical types
- A lexicon is a $n : n$ mapping between lexemes and atomic lexical type
A statistical classifier that predicts for each occurrence of an unknown word or a missing lexical entry

- Input: features from the context
- Output: atomic lexical types

\[p(t, c) = \frac{\exp\left(\sum_i \theta_i f_i(t, c)\right)}{\sum_{t' \in T} \exp\left(\sum_i \theta_i f_i(t', c)\right)} \]
"Words-with-spaces" vs. compositional approaches

Words-with-spaces approach [Zhang et al., 2006]
- Assign lexical types for the entire MWE
- Grammar coverage significantly improves
- Loss in generality for productive MWEs

Compositional approach
- Assign new lexical entries for the head word to treat the MWE as compositional
- Hopefully the grammar coverage improves without drop in accuracy
Words-with-spaces approach [Zhang et al., 2006]
- Assign lexical types for the entire MWE
- Grammar coverage significantly improves
- Loss in generality for productive MWEs

Compositional approach
- Assign new lexical entries for the head word to treat the MWE as compositional
- Hopefully the grammar coverage improves without drop in accuracy
Experiment

- Rank all the MWE candidates according to the three statistical measures: MI, χ^2, PE, and select the top 30 MWE with highest average ranking
- Extract sub-corpus from BNC$_f$ which contains at least one of the MWE for evaluation (674 sentences)
- Use heuristics to extract head words (20 head words)
- Run lexical acquisition for head words on the sub-corpus (21 new entries)
<table>
<thead>
<tr>
<th></th>
<th>item #</th>
<th>parsed #</th>
<th>avg. analysis #</th>
<th>coverage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERG</td>
<td>674</td>
<td>48</td>
<td>335.08</td>
<td>7.1%</td>
</tr>
<tr>
<td>ERG + MWE</td>
<td>674</td>
<td>153</td>
<td>285.01</td>
<td>22.7%</td>
</tr>
</tbody>
</table>

- The coverage improvement is largely compatible with the results of “words-with-spaces” approach reported in [Zhang et al., 2006] (about 15%)
- Great reduction in lexical entries added
Grammar Accuracy

- 153 parsed sentences are analyzed by hand
- 124 (81.0%) of them receive at least one correct/acceptable analysis (comparable to the accuracy reported by [Baldwin et al., 2004])
- Parse selection model finds best analysis in top-5 for 66% of the cases, and top-10 for 75%
Hand-crafted precision grammars usually face coverage/robustness challenges when applied to unseen data with unknown words/MWEs, unknown constructions, etc., all over the place.

[Baldwin et al., 2004] reported parsing coverage of 18% on unseen BNC data parsed with the ERG, with the majority of parsing failures related to missing lexical entries.

The Lexical Type Prediction model presented as an example above is used to handle unknown words (simplex and MWE) on-the-fly.

With the use of this model the ERG achieves around 84% parsing coverage on unseen WSJ data.
The aforementioned systems are evaluated on 700 sentences selected from WSJ data (PARC 700), using Grammatical Relations (GR)
Road Map I

1. MWEs: Theoretical Background & Motivation
 - Linguistic and CL Theories

2. MWEs: Computational Methods
 - “Discovering” MWEs
 - Syntax-based Extraction
 - MWE Identification in Context
 - Interpretation
 - Detecting a Continuum of compositionality in PVs
 - Interpreting Nominal Expressions
 - NLP Tasks and Applications

3. Resources, tasks and applications
 - Tools
 - Resources
Road Map II

- Tasks and applications
- Evaluation

Future challenges and open problems
Tools for acquisition

Text::NSP

- N-gram statistics in text files
- Set of Perl scripts for counting and calculating AMs
- Mostly 2-grams, some measures for 3- and 4-grams
- Customization: sub-n-gram counts and non-tokens

http://search.cpan.org/dist/Text-NSP

[Pedersen et al., 2011, Banerjee and Pedersen, 2003]
Tools for acquisition

UCS

- Large set of sophisticated AMs
- Input: list of bigrams and their counts (proper extraction must be performed externally, e.g. with NSP)
- Perl and R scripts, includes advanced statistical tools for evaluation

http://www.collocations.de/software.html

[Evert, 2004]
Tools for acquisition

LocalMaxs

- Extracts MWEs based on the local maxima of the distribution of a customisable AM
- Relaxed and strict versions
- Non-contiguous variation
- Scalability

http://hlt.di.fct.unl.pt/luis/multiwords/

[Silva and Lopes, 1999, da Silva et al., 1999]
Tools for acquisition

Varro

- Find regularities in treebanks
- Rank regular subtrees by description length

http://sourceforge.net/projects/varro/

Tools for acquisition

mwetoolkit

- Multi-level patterns for candidate generation
- Several filtering methods
- Focused on genericity and flexibility

http://mwetoolkit.sourceforge.net

[Ramisch et al., 2010a, Ramisch et al., 2010b]
Tools for acquisition

Embedded

- FIPS parser [Seretan and Wehrli, 2009, Seretan and Wehrli, 2011]
- Stanford parser [Green et al., 2011]
- Phrasal verbs in RASP
- Most parsers include (minimal) MWE processing
Related tools

- **Complex corpus searches: CQP** [Christ, 1994] and Manatee [Rychlý and Smrz, 2004]

- **Terminology extraction**
 - TermoStat
 - http://olst.ling.umontreal.ca/~drouinp/termostat_web/
 - AntConc
 - http://www.antlab.sci.waseda.ac.jp/software.html
 - TerMine
 - http://www.nactem.ac.uk/software/termine/

- **Named entity recognition**
Tools for acquisition

Which one to chose? [Ramisch et al., 2012]

<table>
<thead>
<tr>
<th></th>
<th>LocMax</th>
<th>mwetk</th>
<th>NSP</th>
<th>UCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cand. extr.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>N-grams $n > 2$</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Non-adjacent</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ling. filter</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Robust measures</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Large corpora</td>
<td>Partly</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>Language independent</td>
<td>+</td>
<td>Partly</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Token identification</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Availability</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
<td>Free</td>
</tr>
</tbody>
</table>
Why do we need MWE acquisition?

- MWEs are very frequent in human languages
 [Jackendoff, 1997b]
- Computational resources (corpora, grammars, lexicons) do not reflect this
Corpora

- At least 17% of Europarl sentences contain a phrasal verb
- 70% of terms in Genia are multiwords
- Flat annotation of noun compounds in treebanks (PTB, French treebank, etc)
Resources

Wordnet

<table>
<thead>
<tr>
<th>Category</th>
<th>Non-MWE</th>
<th>MWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td>57535</td>
<td>60292</td>
</tr>
<tr>
<td>Verbs</td>
<td>8729</td>
<td>2829</td>
</tr>
<tr>
<td>Adverbs</td>
<td>3796</td>
<td>714</td>
</tr>
<tr>
<td>Adjectives</td>
<td>21012</td>
<td>496</td>
</tr>
</tbody>
</table>

- Other languages?
- Missing MWE types (e.g. support verb constructions)?
- New expressions?
Resources

Wordnet

<table>
<thead>
<tr>
<th></th>
<th>Non-MWE</th>
<th>MWE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nouns</td>
<td>57535</td>
<td>60292</td>
</tr>
<tr>
<td>Verbs</td>
<td>8729</td>
<td>2829</td>
</tr>
<tr>
<td>Adverbs</td>
<td>3796</td>
<td>714</td>
</tr>
<tr>
<td>Adjectives</td>
<td>21012</td>
<td>496</td>
</tr>
</tbody>
</table>

- Other languages?
- Missing MWE types (e.g. support verb constructions)?
- New expressions?
Tasks and applications

- Parsing
- Information retrieval
- Word sense disambiguation
- Machine translation
- Educational testing
- Sentiment analysis
Parsing

- Small set of fixed MWEs (e.g. conjunctions) in most parsers, chunkers and POS taggers
- Joining contiguous nominal expressions with an underscore prior to parsing [Korkontzelos and Manandhar, 2010]
- Extend HPSG lexicon with MWEs as words with spaces [Zhang and Kordoni, 2006, Villavicencio et al., 2007]
- Named entities replaced by placeholders [Hogan et al., 2011]
Tasks and applications

Parsing (contd.)

- Feature for disambiguation [Wehrli et al., 2010]
- Tree substitution grammars [Green et al., 2011]
- Joint MWE identification and POS tagging with CRF [Constant and Sigogne, 2011]

Overgeneration vs undergeneration
Word sense disambiguation

- An MWE is less polysemous than its words, one sense per collocation
 - *voice* = 11 senses
 - *mail* = 5 senses
 - *voice mail* = 1 sense

- Wordnet average polysemy: MWEs = 1.07 synsets, words = 1.53 synsets

- Use of jMWE to join words, then perform WSD → improvement of 5 F-measure points [Finlayson and Kulkarni, 2011]
Tasks and applications

Information retrieval

- Joining the words before indexation [Acosta et al., 2011]
- Tightness of 4-character sequences in Chinese for segmentation [Xu et al., 2010]
- Document representation in topic modelling [Baldwin, 2011]
Tasks and applications

Machine translation (rule-based)

- Morphological and syntactic analysis in ITS-2
 [Wehrli, 1998, Wehrli et al., 2010]
- MWE-specific rules in semantic transfer system Jaen
 [Haugereid and Bond, 2011]
- French-japanese terms [Morin and Daille, 2010]
- Web as corpus for disambiguating translation [Grefenstette, 1999]
- Japanese compounds through compositional translation + SVM ranker [Tanaka and Baldwin, 2003, Baldwin and Tanaka, 2004]
Tasks and applications

<table>
<thead>
<tr>
<th>Machine translation (statistical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phrases in Moses [Koehn et al., 2007]</td>
</tr>
<tr>
<td>Static and dynamic strategies for English MWEs from Wordnet [Carpuat and Diab, 2010]</td>
</tr>
<tr>
<td>Monolingual paraphrases for increasing training data [Nakov, 2008a]</td>
</tr>
<tr>
<td>Pre- and post-processing for German compounds [Stymne, 2011, Stymne, 2009]</td>
</tr>
<tr>
<td>Named entities and compound verbs tokenisation [Pal et al., 2010]</td>
</tr>
<tr>
<td>Corpus and phrase-table artificial extensions [Ren et al., 2009]</td>
</tr>
</tbody>
</table>
1. What are the acquisition goals (that is, the target applications) of the resulting MWEs?
2. What is the nature of the evaluation measures that we intend to use?
3. What is the cost of the resources (dictionaries, reference lists, human experts) required for the desired evaluation?
4. How ambiguous are the target MWE types?
Evaluation context

Acquisition goals

- **Intrinsic**: Evaluate the MWEs per se, using human annotation or gold standard dictionaries.
- **Extrinsic**: Evaluate an application output which includes MWE acquisition.
Evaluation context

Nature of evaluation measures

- **Quantitative**: Objective measures (precision, recall, P@100, MAP)
- **Qualitative**: More fine-grained characterisation of errors.
Evaluation context

Availability of resources

- **Manual annotation.** Sample annotated by group of (expert) native speakers. Reliability depends on quality of guidelines, agreement, sample size, etc.

- **Automatic annotation.** Compare extracted MWEs with existing gold standard (dictionary, thesaurus). Assumes the gold standard is complete.

- A mixture of both is commonly employed.
Type of target MWEs

- **Type-based evaluation.** Non-ambiguous expressions, can be evaluated out of context. Several resources available on MWE website [Laporte and Voyatzi, 2008, Krenn, 2008, Nicholson and Baldwin, 2008, Nakov, 2008b]

- **Token-based evaluation.** Target MWEs are ambiguous (e.g. phrasal verbs, idioms). Fewer resources available [Cook et al., 2007, Cook et al., 2008, Baldwin, 2008, Fritzinger et al., 2010].
Acquisition context

Generalisation of evaluation results depends on parameters of acquisition context:

- Characteristics of target MWEs
 - Type
 - Language
 - Domain

- Characteristics of corpora
 - Size
 - Nature
 - Level of analysis

- Existing resources
MWEs: Theoretical Background & Motivation
- Linguistic and CL Theories

MWEs: Computational Methods
- “Discovering” MWEs
- Syntax-based Extraction
- MWE Identification in Context
- Interpretation
 - Detecting a Continuum of compositionality in PVs
 - Interpreting Nominal Expressions
- NLP Tasks and Applications

Resources, tasks and applications
- Tools
- Resources
Road Map II

- Tasks and applications
- Evaluation

4 Future challenges and open problems
MWE community

Trending topics

- Semantics
- Multilingualism
- Applications
- Evaluation
- Machine learning
MWE community

Current and future activities

- ACM TSLP Special Issue on MWEs in 2 parts (http://dl.acm.org/citation.cfm?id=2483691&picked=prox)

- SIGLEX-MWE Section (http://multiword.sourceforge.net/)

Future challenges

- Identification is not a solved problem
- Integration and representation in applications
- Robust methods for new MWEs in web texts
Further reading

Please refer to complete list of references :-(
Thank you!
(1993).
Comp. Ling., 19(1).

Proc. of the 36th ACL and 17th COLING, Volume 2, Montreal, Quebec, Canada. ACL.

(2005).
Comp. Speech & Lang. Special issue on MWEs, 19(4).

(2010).
Lang. Res. & Eval. Special Issue on Multiword expression: hard going or plain sailing, 44(1-2).

(2010a).
Proc. of HLT: The 2010 Annual Conf. of the NAACL (NAACL 2003), Los Angeles, California. ACL.

(2010b).
Proc. of the Seventh LREC (LREC 2010), Valetta, Malta. ELRA.

Identification and treatment of multiword expressions applied to information retrieval. In [Kordoni et al., 2011], pages 101–109.

Multiword expressions.

Translation by machine of complex nominals: Getting it right.

The design, implementation, and use of the Ngram Statistic Package.

Proc. of the 2011 EMNLPCONF (EMNLP 2011), Edinburgh, Scotland, UK. ACL.

Proc. of the ACL Workshop on MWEs: Analysis, Acquisition and Treatment (MWE 2003), Sapporo, Japan. ACL.
Towards best practice for multiword expressions in computational lexicons.
In Proc. of the Third LREC (LREC 2002), pages 1934–1940, Las Palmas, Canary Islands, Spain. ELRA.

In [con, 2010a], pages 242–245.

Looking for needles in a haystack or locating interesting collocational expressions in large textual databases.

A modular and flexible architecture for an integrated corpus query system.

Church, K. (2011).
How many multiword expressions do people know?
In [Kordoni et al., 2011], pages 137–144.
For Further Reading V

Word association norms mutual information, and lexicography.

Formalism-Independent Parser Evaluation with CCG and DepBank.

MWU-aware part-of-speech tagging with a CRF model and lexical resources.
In [Kordoni et al., 2011], pages 49–56.

Pulling their weight: Exploiting syntactic forms for the automatic identification of idiomatic expressions in context.
In Grégoire, N., Evert, S., and Kim, S. N., editors, Proc. of the ACL Workshop on A Broader Perspective on MWEs (MWE 2007), pages 41–48, Prague, Czech Republic. ACL.

The VNC-tokens dataset.
In [Grégoire et al., 2008], pages 19–22.
Lexical Semantics.
Cambridge University Press, Cambridge, UK.

Using localmaxs algorithm for the extraction of contiguous and non-contiguous multiword lexical units.

Termight: Identifying and translating technical terminology.
In *Proc. of the 4th ANLP Conf. (ANLP 1994)*, pages 34–40, Stuttgart, Germany. ACL.

Learning to interpret novel noun-noun compounds: evidence from a category learning experiment.

Accurate methods for the statistics of surprise and coincidence.
In [jou, 1993], pages 61–74.

For Further Reading VIII

Detecting multi-word expressions improves word sense disambiguation.
In [Kordoni et al., 2011], pages 20–24.

Firth, J. R. (1957).
Papers in Linguistics 1934-1951.
Oxford UP, Oxford, UK.
233 p.

On building a more efficient grammar by exploiting types.

A survey of idiomatic preposition-noun-verb triples on token level.
In [con, 2010b], pages 2908–2914.

Multiword expression identification with tree substitution grammars: A parsing tour de force with French.
In [Barzilay and Johnson, 2011], pages 725–735.

The World Wide Web as a resource for example-based machine translation tasks.
In *Proc. of the Twenty-First Translating and the Computer*, London, UK. ASLIB.
Proc. of the LREC Workshop Towards a Shared Task for MWEs (MWE 2008), Marrakech, Morocco.

Extracting transfer rules for multiword expressions from parallel corpora.
In [Kordoni et al., 2011], pages 92–100.

Decreasing lexical data sparsity in statistical syntactic parsing - experiments with named entities.
In [Kordoni et al., 2011], pages 14–19.

Twistin’ the night away.

Twistin’ the night away.

Comparing lexical relationships observed within Japanese collocation data and Japanese word association norms.
In [Zock and Huang, 2008], pages 1–8.

Laporte, É., Nakov, P., Ramisch, C., and Villavicencio, A., editors (2010). Proc. of the COLING Workshop on MWEs: from Theory to Applications (MWE 2010), Beijing, China. ACL.

For Further Reading XII

The stress and structure of modified noun phrases in English.

Automatic retrieval and clustering of similar words.
In [con, 1998], pages 768–774.

Varro: An algorithm and toolkit for regular structure discovery in treebanks.

An efficient, generic approach to extracting multi-word expressions from dependency trees.
In [Laporte et al., 2010], pages 84–87.

Detecting a continuum of compositionality in phrasal verbs.
In [Bond et al., 2003], pages 73–80.

A formal lexicon in the meaning-text theory or (how to do lexica with words).
For Further Reading XIII

Fixed Expressions and Idioms in English: A Corpus-based Approach.
Oxford University Press, Oxford, UK.

Morin, E. and Daille, B. (2010).
Compositionality and lexical alignment of multi-word terms.
In [jou, 2010], pages 79–95.

Improved statistical machine translation using monolingual paraphrases.

Paraphrasing verbs for noun compound interpretation.
In [Grégoire et al., 2008], pages 46–49.

Interpreting compound nominalisations.
In [Grégoire et al., 2008], pages 43–45.
For Further Reading XIV

Idioms.
Language, 70:491–538.

Handling named entities and compound verbs in phrase-based statistical machine translation.
In [Laporte et al., 2010], pages 45–53.

Reference data for Czech collocation extraction.
In [Grégoire et al., 2008], pages 11–14.

The n-gram statistics package (text::NSP) : A flexible tool for identifying n-grams, collocations, and word
associations.
In [Kordoni et al., 2011], pages 131–133.

A broad evaluation of techniques for automatic acquisition of multiword expressions.
In *Proc. of the ACL 2012 SRW*, pages 1–6, Jeju, Republic of Korea. ACL.

An evaluation of methods for the extraction of multiword expressions.
In [Grégoire et al., 2008], pages 50–53.
Multiword expressions in the wild? the mwetoolkit comes in handy.

mwetoolkit: a framework for multiword expression identification.
In [con, 2010b], pages 662–669.

The computation of associative responses to multiword stimuli.
In [Zock and Huang, 2008], pages 102–109.

Improving statistical machine translation using domain bilingual multiword expressions.

Manatee, bonito and word sketches for Czech.

For Further Reading

A local maxima method and a fair dispersion normalization for extracting multi-word units from corpora.
In Proceedings of the Sixth Meeting on Mathematics of Language (MOL6), pages 369–381, Orlando, FL, USA.

Retrieving collocations from text: Xtract.
In [jou, 1993], pages 143–177.

A comparison of merging strategies for translation of German compounds.

Pre- and postprocessing for statistical machine translation into Germanic languages.
In Proc. of the ACL 2011 SRW, pages 12–17, Portland, OR, USA. ACL.

Noun-noun compound machine translation A feasibility study on shallow processing.
In [Bond et al., 2003], pages 17–24.

The availability of verb-particle constructions in lexical resources: How much is enough?
Journal of Computer Speech and Language Processing, 19.
Get out but don’t fall down: verb-particle constructions in child language.
In Berwick, R., Korhonen, A., Poibeau, T., and Villavicencio, A., editors, Proc. of the EACL 2012 Workshop on Computational Models of Language Acquisition and Loss, pages 43–50, Avignon, France. ACL.

Validation and evaluation of automatically acquired multiword expressions for grammar engineering.
In Eisner, J., editor, Proc. of the 2007 Joint Conference on EMNLP and Computational NLL (EMNLP-CoNLL 2007), pages 1034–1043, Prague, Czech Republic. ACL.

Translating idioms.
In [con, 1998], pages 1388–1392.

Sentence analysis and collocation identification.
In [Laporte et al., 2010], pages 27–35.

Application of the tightness continuum measure to Chinese information retrieval.
In [Laporte et al., 2010], pages 54–62.
Automated deep lexical acquisition for robust open texts processing.
In *Proc. of the Sixth LREC (LREC 2006)*, pages 275–280, Genoa, Italy. ELRA.

Automated multiword expression prediction for grammar engineering.