Abstract: The core ingredient of deep learning is the notion of distributed representation. This talk will start by explaining its theoretical advantages, in comparison with non-parametric methods based on counting frequencies of occurrence of observed tuples of values (like with n-grams). The talk will then explain how having multiple levels of representation, i.e., depth, can in principle give another exponential advantage. Neural language models have been extremely successful in recent years but extending their reach from language modeling to machine translation is very appealing because it forces the learned intermediate representations to capture meaning, and we found that the resulting word embeddings are qualitatively different. Recently, we introduced the notion of attention-based encoder-decoder systems, with impressive results on machine translation several language pairs and for mapping an image to a sentence, and these results will conclude the talk.

Biography: Yoshua Bengio received a PhD in Computer Science from McGill University, Canada in 1991. After two post-doctoral years, one at M.I.T. with Michael Jordan and one at AT&T Bell Laboratories with Yann LeCun and Vladimir Vapnik, he became professor at the Department of Computer Science and Operations Research at Université de Montréal. He is the author of two books and more than 200 publications, the most cited being in the areas of deep learning, recurrent neural networks, probabilistic learning algorithms, natural language processing and manifold learning. He is among the most cited Canadian computer scientists and is or has been associate editor of the top journals in machine learning and neural networks. Since ’2000 he holds a Canada Research Chair in Statistical Learning Algorithms, since ’2006 an NSERC Industrial Chair, since ’2005 his a Senior Fellow of the Canadian Institute for Advanced Research and since 2014 he co-directs its program focused on deep learning. He is on the board of the NIPS foundation and has been program chair and general chair for NIPS. He has co-organized the Learning Workshop for 14 years and co-created the new International Conference on Learning Representations. His current interests are centered around a quest for AI through machine learning, and include fundamental questions on deep learning and representation learning, the geometry of generalization in high-dimensional spaces, manifold learning, biologically inspired learning algorithms, and challenging applications of statistical machine learning.